Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Tunable Anisotropic Optoelectronic Properties and Scintillation Performance of Octahedrally Coordinated SiS2 Monolayer

Submitted
October 14, 2025
Published
2025-10-13

Abstract

Investigation of electronic and optical properties is important for integrating the material into devices. The investigated electronic characteristics of the SiS2 monolayer reveal that the band gap in the noble-metal-doped system increases significantly with increasing doping concentration. However, its indirect band gap features persist even after doping. A slight increase in doping concentration shifts the material’s band gap. Several quantum-chemical quantities were calculated using the concepts of HOMO and LUMO energy states to gain insight into the material’s kinetic stability and chemical reactivity. The investigated optical quantities depend on dopant concentration and light polarization in the visible and UV regions, suggesting the material’s integration into optoelectronic devices. The polarization-dependent light absorption in the SiS2 can be used to build on-chip polarizers and polarization-sensitive photodetectors. It is a material with a negative real dielectric constant, indicating its potential applications in super- and hyper-lenses, optical switches, and other novel optical thin-film-based components and devices. In addition to their excellent optoelectronic properties, the scintillation performance of these materials has also been evaluated. The calculated output light yield under ideal conditions is highest for the pure material, exceeding that of several reported halide-based scintillators. It is also observed that the scintillation performance is slightly reduced in the doped materials. The studied scintillation properties of SiS2 monolayers suggest that it is a potential candidate for applications in high-energy physics, diagnostics, imaging, and security. Therefore, this work suggests that the studied materials are excellent for anisotropic optoelectronic and scintillating devices.

References

  1. K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science (80). 306 (2004) 666.https://doi.org/10.1126/science.1102896
  2. L. Jiang, D. Zhou, J. Yang, S. Zhou, H. Wang, X. Yuan, J. Liang, X. Li, Y. Chen, H. Li, 2D single- and few-layered MXenes: synthesis, applications and perspectives, J. Mater. Chem. A. 10 (2022) 13651-13672.https://doi.org/10.1039/D2TA01572B
  3. J. Nam, G.Y. Lee, D.Y. Lee, D. Sung, S. Hong, A.R. Jang, K.S. Kim, Tailored Synthesis of Heterogenous 2D TMDs and Their Spectroscopic Characterization, Nanomaterials. 14 (2024).https://doi.org/10.3390/mi14122139
  4. S. Madhurantakam, G. Mathew, B.E. David, A. Naqvi, S. Prasad, Recent Progress in Transition Metal Dichalcogenides for Electrochemical Biomolecular Detection, Micromachines. 14 (2023).https://doi.org/10.1021/acs.jpcc.5b02950
  5. F.A. Rasmussen, K.S. Thygesen, Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides, J. Phys. Chem. C. 119 (2015) 13169-13183.
  6. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small. 11 (2015) 640-652.https://doi.org/10.1002/smll.201402041
  7. K. Momeni, Y. Ji, Y. Wang, S. Paul, S. Neshani, D.E. Yilmaz, Y.K. Shin, D. Zhang, J.W. Jiang, H.S. Park, S. Sinnott, A. van Duin, V. Crespi, L.Q. Chen, Multiscale computational understanding and growth of 2D materials: a review, Npj Comput. Mater. 6 (2020). https://doi.org/10.1038/s41524-020-0280-2
  8. P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43 (2014) 6537.https://doi.org/10.1039/C4CS00102H
  9. B.N. Nguyen Thi, C.V. Ha, N. Thi Ha Lien, J. Guerrero-Sanchez, D.M. Hoat, Doping-mediated electronic and magnetic properties of graphene-like ionic NaX (X = F and Cl) monolayers, Phys. Chem. Chem. Phys. 25 (2023) 32569-32577.https://doi.org/10.1039/D3CP02115G
  10. J. Zhou, L. Shen, M.D. Costa, K.A. Persson, S.P. Ong, P. Huck, Y. Lu, X. Ma, Y. Chen, H. Tang, Y.P. Feng, 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches, Sci. Data. 6 (2019) 1-10.https://doi.org/10.1038/s41597-018-0005-2
  11. Y. Wei, H. Liu, K. Wang, Magnetic anisotropy and phononic properties of two-dimensional ferromagnetic Fe3GeS2 monolayer, IScience. 27 (2024) 110781.https://doi.org/10.1016/j.isci.2024.110781
  12. D.B. Long, L.M. Yang, Transmutation Engineering Makes a Large Class of Stable and Exfoliable A3BX2 Compounds with Exceptional High Magnetic Critical Temperatures and Exotic Electronic Properties, ACS Appl. Mater. Interfaces. 15 (2023) 24549-24569. https://doi.org/10.1021/acsami.3c02536
  13. https://en.wikipedia.org/wiki/2D_Materials, (n.d.).
  14. B. Aktekin, L.M. Riegger, S.K. Otto, T. Fuchs, A. Henss, J. Janek, SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis, Nat. Commun. 14 (2023).https://doi.org/10.1038/s41467-023-42512-y
  15. E.C. Ahn, 2D materials for spintronic devices, Npj 2D Mater. Appl. 4 (2020).https://doi.org/10.1038/s41699-020-0152-0
  16. M.V. Sulleiro, A. Dominguez-Alfaro, N. Alegret, A. Silvestri, I.J. Gómez, 2D Materials towards sensing technology: From fundamentals to applications, Sens. Bio-Sensing Res. 38 (2022).https://doi.org/10.1016/j.sbsr.2022.100540
  17. L. Tang, X. Meng, D. Deng, X. Bao, Confinement Catalysis with 2D Materials for Energy Conversion, Adv. Mater. 31 (2019) 1-16.https://doi.org/10.1002/adma.201901996
  18. J. An, X. Zhao, Y. Zhang, M. Liu, J. Yuan, X. Sun, Z. Zhang, B. Wang, S. Li, D. Li, Perspectives of 2D Materials for Optoelectronic Integration, Adv. Funct. Mater. 32 (2022) 1-24.https://doi.org/10.1002/adfm.202110119
  19. M. Long, P. Wang, H. Fang, W. Hu, Progress, Challenges, and Opportunities for 2D Material Based Photodetectors, Adv. Funct. Mater. 29 (2019) 1803807.https://doi.org/10.1002/adfm.201803807
  20. W.O. Razmus, K. Acheson, P. Bucksbaum, M. Centurion, E. Champenois, I. Gabalski, M.C. Hoffman, A. Howard, M.F. Lin, Y. Liu, P. Nunes, S. Saha, X. Shen, M. Ware, E.M. Warne, T. Weinacht, K. Wilkin, J. Yang, T.J.A. Wolf, A. Kirrander, R.S. Minns, R. Forbes, Multichannel photodissociation dynamics in CS2 studied by ultrafast electron diffraction, Phys. Chem. Chem. Phys. 24 (2022) 15416-15427.https://doi.org/10.1039/D2CP01268E
  21. H. Ullah, M. Noor-A-Alam, Y. Shin, Vacancy and doping-dependent electronic and magnetic properties of monolayer SnS2, J. Am. Chem. Soc. 103 (2020) 391-402. https://doi.org/10.1111/jace.16739
  22. X. Dong, T.A. Pham, C. Xu, Y. He, W. Lai, X. Ke, P. Zhang, Growth and Electronic Properties of SnSe2 Films on Reconstructed, (111)-Oriented SrTiO3 Substrates, J. Phys. Chem. C. 127 (2023) 16732-16739.https://doi.org/10.1021/acs.jpcc.3c04609
  23. L.A. Burton, T.J. Whittles, D. Hesp, W.M. Linhart, J.M. Skelton, B. Hou, R.F. Webster, G. O’Dowd, C. Reece, D. Cherns, D.J. Fermin, T.D. Veal, V.R. Dhanak, A. Walsh, Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst, J. Mater. Chem. A. 4 (2016) 1312-1318.https://doi.org/10.1039/C5TA08214E
  24. G. Tse, The structural, electronic, optical, elastic, and vibrational properties of GeS2 using HSE03: a first-principle investigation Published: 06 July 2024, J. Comput. Electron. 23 (2024) 968-976.https://doi.org/10.1007/s10825-024-02196-z
  25. R. Mishra, P.K. Mishra, S. Phapale, P.D. Babu, P.U. Sastry, G. Ravikumar, A.K. Yadav, Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram, J. Solid State Chem. 237 (2016) 234-241.https://doi.org/10.1016/j.jssc.2016.02.021
  26. Y. Wang, L.M. Vu, T. Lu, C. Xu, Y. Liu, J.Z. Ou, Y. Li, Piezoelectric Responses of Mechanically Exfoliated Two-Dimensional SnS2Nanosheets, ACS Appl. Mater. Interfaces. 12 (2020) 51662-51668. https://doi.org/10.1021/acsami.0c16039
  27. R. Gao, Y. Yong, X. Yuan, S. Hu, Q. Hou, Y. Kuang, First-Principles Investigation of Adsorption Behaviors and Electronic, Optical, and Gas-Sensing Properties of Pure and Pd-Decorated GeS2Monolayers, ACS Omega. 7 (2022) 46440-46451. https://doi.org/10.1021/acsomega.2c05142
  28. Y. Liu, W. Li, F. Li, Z. Chen, Computational discovery of diverse functionalities in two-dimensional square disulfide monolayers: auxetic behavior, high curie temperature ferromagnets, electrocatalysts, and photocatalysts, J. Mater. Chem. A. 11 (2023) 20254-20269.https://doi.org/10.1039/D3TA03699E
  29. H. Wang, T. Li, Z. Chen, W. Zhu, W. Lin, H. Wang, X. Liu, Z. Li, High out-of-plane negative Poisson’s ratios and strong light harvesting in two-dimensional SiS2 and its derivatives, Nanoscale. 15 (2023) 16155-16162.https://doi.org/10.1039/D3NR04483A
  30. D. Plašienka, R. Martoňák, E. Tosatti, Creating new layered structures at high pressures: SiS2, Sci. Rep. 6 (2016) 1-11.https://doi.org/10.1038/s41598-016-0001-8
  31. J. Evers, L. Möckl, G. Oehlinger, R. Köppe, H. Schnöckel, O. Barkalov, S. Medvedev, P. Naumov, More Than 50 Years after Its Discovery in SiO2 Octahedral Coordination Has Also Been Established in SiS2 at High Pressure, Inorg. Chem. 56 (2017) 372-377.https://doi.org/10.1021/acs.inorgchem.6b02294
  32. M. Naseri, M. Abutalib, M. Alkhambashi, J. Gu, J. Jalilian, A. Farouk, J. Batle, Prediction of novel SiX2(X = S, Se) monolayer semiconductors by density functional theory, Phys. E Low-Dimensional Syst. Nanostructures. 114 (2019) 113581.https://doi.org/10.1016/j.physe.2019.113581
  33. X. Wang, L. Wang, Y. Li, Prediction of SiS2 and SiSe2 as promising anode materials for sodium-ion batteries, Phys. Chem. Chem. Phys. 24 (2022) 13189-13193.https://doi.org/10.1039/D2CP01184K
  34. Y. Guan, X. Li, R. Niu, N. Zhang, T. Hu, L. Zhang, Tunable electronic properties of type-ii sis2/wse2 hetero-bilayers, Nanomaterials. 10 (2020) 1-11.https://doi.org/10.3390/nano10102037
  35. Q.Y. Chen, M.Y. Liu, C. Cao, Y. He, Strain-dependent optical properties of the novel monolayer group-IV dichalcogenides SiS2semiconductor: A first-principles study, Nanotechnology. 32 (2021).https://doi.org/10.1088/1361-6528/abeada
  36. W.J. Zhao, L. Ma, L.C. Ma, X.H. Tian, J.M. Zhang, First-principles study on the photocatalytic property of SiS/BSe and SiS2/BSe van der Waals heterojunctions, Eur. Phys. J. B. 96 (2023) 1-17.https://doi.org/10.1140/epjb/s10051-022-00470-2
  37. [1] Piotr A Rodnyi, Physical Processes in inorganic scintillators, 1st Editio, CRC Press, Boca Raton New York, 1997.
  38. T. Yanagida, Inorganic scintillating materials and scintillation detectors, Proc. Jpn. Acad., Ser. B. 94 (2018) 75-97.https://doi.org/10.2183/pjab.94.007
  39. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems, Physical Principles and Crystal Engineering, Second Edi, Springer, Cham Switzerland, 2017.https://doi.org/10.1007/978-3-319-45522-8
  40. Y. Fujimoto, M. Koshimizu, T. Yanagida, G. Okada, K. Saeki, K. Asai, Thallium magnesium chloride: A high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X-ray and gamma-ray detection, Jpn. J. Appl. Phys. 55 (2016) 4-7. https://doi.org/10.7567/JJAP.55.090301
  41. T. Yanagida, Y. Fujimoto, M. Arai, M. Koshimizu, T. Kato, D. Nakauchi, N. Kawaguchi, Comparative studies of scintillation properties of Tl-based crystals, Sensors Mater. 32 (2020) 1351-1356. https://doi.org/10.18494/SAM.2020.2711
  42. S.U. Zaman, N. Rahman, M. Arif, M. Saqib, M. Husain, E. Bonyah, Z. Shah, S. Zulfiqar, A. Khan, Ab initio investigation of the physical properties of Tl based chloroperovskites TlXCl3(X = Ca and Cd), AIP Adv. 11 (2021). https://doi.org/10.1063/5.0034759
  43. M.N. Murshed, M.E. El Sayed, S. Naji, A. Samir, Electronic and optical properties and upper light yield estimation of new scintillating material TlMgCl3: Ab initio study, Results Phys. 29 (2021) 104695. https://doi.org/10.1016/j.rinp.2021.104695
  44. M.A. Javed, R. Ahmed, S.A. Tahir, B. Ul Haq, Investigations of optoelectronic and scintillating properties of novel halide perovskites Cs2KSnX6 (X=Cl, Br, I), J. Solid State Chem. 341 (2025) 125084 (and refereces therein). https://doi.org/10.1016/j.jssc.2024.125084
  45. N.H. Linh, T.T. Quang, N.M. Son, V. Van Thanh, D. Van Truong, Prediction of mechanical, electronic and optical properties of monolayer 1T Si-dichalcogenides via first-principles theory, Mater. Today Commun. 36 (2023) 106553.https://doi.org/10.1016/j.mtcomm.2023.106553
  46. [2] N.T. Han, J. Guerrero-Sanchez, D.M. Hoat, Pnictogen Atom Substitution to Modify the Electronic and Magnetic Properties of SiS2 Monolayer: A DFT Study, Adv. Theory Simulations. 2400900 (2024) 1-11.
  47. [3] D. B. Long, N. V. Tkachenko, Q. Feng, X. Li, A.I. Boldyrev, J. Yang, L.-M. Yang, Two-dimensional Bimetal-Embedded Expanded Phthalocyanine Monolayers: A Class of Multifunctional Materials with Fascinating Properties, Adv. Funct. Mater. (2024) 2313171-10.
  48. D.B. Long, Y. Feng, G. Gao, L.M. Yang, Effective modulation of the exotic properties of two-dimensional multifunctional TM2@g-C4N3 monolayers via transition metal permutation and biaxial strain, Nanoscale. 15 (2023) 9843-9863. https://doi.org/10.1039/D3NR00984J
  49. C. Wang, L.M. Yang, Alkaline-earth metal embedded expanded phthalocyanine nanosheets with direct band gaps and high power conversion efficiency, J. Mater. Chem. C. 12 (2024) 10181-10192. https://doi.org/10.1039/D4TC01541J
  50. C.C. Lee, Y.T. Lee, M. Fukuda, T. Ozaki, Tight-binding calculations of optical matrix elements for conductivity using nonorthogonal atomic orbitals: Anomalous Hall conductivity in bcc Fe, Phys. Rev. B. 98 (2018) 1-8.https://doi.org/10.1103/PhysRevB.98.115115
  51. Y.T. Lee, C.C. Lee, M. Fukuda, T. Ozaki, Unfolding optical transition weights of impurity materials for first-principles LCAO electronic structure calculations, Phys. Rev. B. 102 (2020) 1-9. https://doi.org/10.1103/PhysRevB.102.075143
  52. X. Ge, X. Zhou, D. Sun, X. Chen, First-Principles Study of Structural and Electronic Properties of Monolayer PtX2 and Janus PtXY (X, Y = S, Se, and Te) via Strain Engineering, ACS Omega. 8 (2023) 5715-5721. https://doi.org/10.1021/acsomega.2c07271
  53. K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys. 20 (1952) 722-725. https://doi.org/10.1063/1.1700523
  54. R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proc. Natl. Acad. Sci. 83 (1986) 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
  55. R.G. Parr, R.G. Pearson, Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc. 105 (1983) 7512-7516. https://doi.org/10.1021/ja00364a005
  56. A. Niazi, S. Jameh-Bozorghi, D. Nori-Shargh, Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines, J. Hazard. Mater. 151 (2008) 603-609.https://doi.org/10.1016/j.jhazmat.2007.06.030
  57. V. Hadigheh Rezvan, Molecular structure, HOMO-LUMO, and NLO studies of some quinoxaline 1,4-dioxide derivatives: Computational (HF and DFT) analysis, Results Chem. 7 (2024) 0-7.https://doi.org/10.1016/j.rechem.2024.101437
  58. Y. T. Lee, T. Ozaki, OpenMX viewer: A web-based crystalline and molecular graphical user interface program, J. Mol. Graph. Model. 89 (2019) 92-98.https://doi.org/10.1016/j.jmgm.2019.03.013
  59. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006) 1-9.https://doi.org/10.1103/PhysRevB.73.045112
  60. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, B.G. Svensson, Electronic structure and optical properties of ZnX (X=O, S, Se, Te): A density functional study, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1-14.https://doi.org/10.1103/PhysRevB.75.155104
  61. [4] C.W. Chu, F. Chen, J. Shulman, S. Tsui, Y.Y. Xue, W. Wen, P. Sheng, A negative dielectric constant in nano-particle materials under an electric field at very low frequencies, Proc. SPIE, Strongly Correl. Electron Mater. Phys. Nanoeng. 5932 (2005) 59320X.
  62. H. Yan, C. Zhao, K. Wang, L. Deng, M. Ma, G. Xu, Negative dielectric constant manifested by static electricity, Appl. Phys. Lett. 102 (2013).https://doi.org/10.1063/1.4792064
  63. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, J.M. Wills, Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 1776-1785.https://doi.org/10.1103/PhysRevB.59.1776
  64. P. Singh, G. Dosovitskiy, Y. Bekenstein, Bright Innovations: Review of Next-Generation Advances in Scintillator Engineering, ACS Nano. 18 (2024) 14029-14049.https://doi.org/10.1021/acsnano.3c12381
  65. F. Moradi, D.A. Bradley, Z.H. Tarif, A. Khodaei, A. Basaif, S.A. Ibrahim, H.A. Abdul-Rashid, Time-resolved optical fiber measurements: a review of scintillator materials and applications, Radiat. Detect. Technol. Methods. 9 (2025) 1-16. https://doi.org/10.1007/s41605-024-00510-8
  66. H. Wei, J. Huang, Halide lead perovskites for ionizing radiation detection, Nat. Commun. 10 (2019) 1-12.https://doi.org/10.1038/s41467-018-07882-8
  67. N. Falsini, A. Ubaldini, F. Cicconi, A. Rizzo, A. Vinattieri, M. Bruzzi, Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices, Sensors. 23 (2023) 1-25.https://doi.org/10.3390/s23104930
  68. W. Li, M. Li, Y. He, J. Song, K. Guo, W. Pan, H. Wei, Arising 2D Perovskites for Ionizing Radiation Detection, Adv. Mater. 36 (2024) 1-36. https://doi.org/10.1002/adma.202309588
  69. D.J. Robbins, On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation, J. Electrochem. Soc. 127 (1980) 2694-2702.https://doi.org/10.1149/1.2129574
  70. P. Dorenbos, P. Dorenbos, Light output and energy resolution of Light output and energy resolution of Ce 3 + -doped scintillators, 486 (2015) 208-213.https://doi.org/10.1016/S0168-9002(02)00704-0
  71. P.A. Rodnyi, P. Dorenbos, C.W.E. van Eijk, Energy Loss in Inorganic Scintillators, Phys. Status Solidi. 187 (1995) 15-29.https://doi.org/10.1002/pssb.2221870102
  72. P. Dorenbos, Fundamental limitations in the performance of Ce3+-, Pr 3+-, and Eu2+-activated scintillators, IEEE Trans. Nucl. Sci. 57 (2010) 1162-1167.https://doi.org/10.1109/TNS.2009.2031140
  73. C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors, J. Appl. Phys. 39 (1968) 2029-2038. https://doi.org/10.1063/1.1656484