Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Enhancement of Optical Transparency and Structural Integrity of DMP Chalcone Crystal under Acoustic Shock Wave Exposure

Submitted
November 19, 2025
Published
2025-12-08

Abstract

The nonlinear optical (NLO) properties of organic crystals are susceptible to their molecular structure and stability under extreme conditions. Herein, the (2E)-2-(3,4-dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one (DMP) chalcone crystal was synthesized and grown by a slow evaporation method, and its structural and optical responses under acoustic shock wave exposures were systematically investigated. Although previous reports indicate that the present crystal is thermally stable only up to 187 °C, the present work demonstrated remarkable resilience by withstanding transient acoustic shock conditions of approximately 0.59 MPa and 520 K without any signs of structural degradation, thereby demonstrating impressive resilience. XRD analysis indicated that no new diffraction peaks appeared after the shock exposure, confirming excellent phase stability of the crystal, while the variation in diffraction intensities and crystallite size indicated dynamic recrystallization. The crystallite size increased from 19 nm to 25 nm, which is accompanied by a decrease in lattice strain, indicating improvement in crystallinity. Further, optical microscopy showed a sequential process of defect creation and healing, and the crystal surface smoothed after the fourth and fifth shocks, consistent with shock-induced recrystallization. UV-Vis spectroscopy revealed a significant increase in optical transmittance from 31.6% to 71.5% and a slight modulation of the optical band gap from 3.21 eV to 3.32 eV, reflecting improved molecular ordering and reduced defect density. Overall, the structure remains stable while the band gap is tuned under acoustic shock waves, demonstrating that optical properties can be effectively modulated without disrupting the crystalline framework. This highlights acoustic shock wave exposure as a promising route for developing robust optoelectronic materials capable of reliable performance under extreme conditions. The findings further suggest that the acoustic shock wave technique can be used to engineer the microstructure and optical response of organic NLO crystals such as DMP, thereby expanding their potential for high-performance photonic and optoelectronic applications.

References

  1. J. Badan, R. Hierle, A. Perigaud, J. Zyss, NLO properties of organic molecules and polymeric materials, in: D.J. Williams (Ed.), American Chemical Society Symposium Series, 233, American Chemical Society, Washington, DC, 1993.
  2. D. Yu, D. Xue, Acta Crystallographica B 62 (2006) 702. https://doi.org/10.1107/S0108768106018520
  3. R.L. Sutherland, Handbook of Nonlinear Optics, Dekker, New York, 1996.
  4. D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1997, vols. 1 and 2.
  5. H.J. Ravindra, A. John Kiran, K. Chandrasekharan, H.D. Shashikala, S. M. dharmaprakash, Third order nonlinear optical properties and optical limiting in donor/acceptor substituted 4′-methoxy chalcone derivatives. Appl. Phys. B 88, 105-110 (2007). https://doi.org/10.1007/s00340-007-2677-8
  6. P.C. Rajesh Kumar, V. Ravindrachary, K. Janardhana, H.R. Manjunath, Prakash Karegouda, Vincent Crasta, M.A. Sridhar, Journal of Molecular Structure 1005 (2011) 1. https://doi.org/10.1016/j.molstruc.2011.07.038
  7. D.N. Dhar, The Chemistry of Chalcones and Related Compounds, Wiley, New York, 1981.
  8. R.A. Hann, D. Bloor, Organic Materials for Non-linear Optics, Royal Society of Chemistry, London, 1989, pp. 157.
  9. A. Jawad Almosawe and H. L. Saadon, Nonlinear optical and optical limiting properties of new structures of organic nonlinear optical materials for photonic applications, Chinese Optics Letters, 11(4), 041902(2013). https://doi.org/10.3788/COL201311.041902
  10. M. K. M. Ali, A. O. Elzupir, M. A. Ibrahem, I. I. Suliman, A. Modwi, H. Idriss, K. H. Ibnaouf, Characterization of optical and morphological properties of chalcone thin films for optoelectronics applications. Optik, 145, pp.529-533, (2017). https://doi.org/10.1016/j.ijleo.2017.08.044
  11. D. Haleshappa, S. N. Kakathkar, R. Bairy, M. S. Murari, The investigation of nonlinear optical response of chalcone and PMMA united thin films for photonic applications. Materials Today: Proceedings, 100, pp.31-36, (2024). https://doi.org/10.1016/j.matpr.2023.04.476
  12. N. Syaharil, Synthesis, electrochemical analysis and DFT calculation of new alkoxylated-chalcone as semiconductor material, Malaysian Journal of Analytical Sciences, 26, (2022).
  13. S. Nampoothiri, S. Chandran, S. Raj, R. Rajasekharan, N. Gummagol, L. Joseph, Third‐Order Nonlinear Optical Studies of (2E)‐2‐(3,4‐Dimethoxybenzylidene) ‐3, 4‐Dihydronaphthalen‐1 (2H)‐One Chalcone Derivative using Z‐Scan Technique and DFT Method. Crystal Research and Technology, (2025), 60(8), p.e70011. https://doi.org/10.1002/crat.70011
  14. F. Irine Maria Bincy, S. Oviya, P. Kannappan, Ikhyun Kim, S. A. Martin Britto Dhas. "Acoustic shock wave-driven dynamic recrystallization induced reversible rod-to-cube morphology transition in CdS: preserving structural integrity with optical modifications." Dalton Transactions (2025). https://doi.org/10.1039/D5DT00998G
  15. D. Angeline Shirmila, D. Reuben Jonathan, M. Krishna Priya, J. Hemalatha, G. Usha, (2E)-2-(3,4-Dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, IUCr Data, 2021, 6, x210309. https://doi.org/10.1107/S2414314621003096
  16. V. Jayaram, A. Gupta, K. P. J. Reddy, Investigation of strong shock wave interactions with CeO2 ceramic, J. Adv. Ceram, vol.3, pp.297-305, 2014. https://doi.org/10.1007/s40145-014-0121-1
  17. I. Fedorov, D. Korabel nikov, C. Nguyen, A. Prosekov, Physicochemical properties of L-and DL-valine: first-principles calculations, Amino Acids, vol. 52, pp.425-433, 2020. https://doi.org/10.1007/s00726-020-02818-3
  18. A. Sivakumar, S. Sahaya Jude Dhas, L. Dai, V. Mowlika, P. Sivaprakash, R. Suresh Kumar, A. I. Almansour, S. Arumugam, I. Kim, and S. A. Martin Britto Dhas, X-ray diffraction, and optical spectroscopic analysis on the crystallographic phase stability of shock wave loaded L-Valine, J Mater Sci, vol.58, pp.9210-9220, 2023. https://doi.org/10.1007/s10853-023-08588-z
  19. J. Zhao, H. Liu, L. Ehm, D. Dong, Z. Chen, and G. Gu, High-pressure phase transitions, amorphization, and crystallization behaviors in Bi2Se3, J. Phys.: Condens. Matter, vol.25, pp.125602-125610, 2013. https://doi.org/10.1088/0953-8984/25/12/125602
  20. S. Ravi, D. P. Bisen, S. U. Shukla, and B. G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials, Recent Research in Science and Technology 4 (2012) 77-79.
  21. M. Basak, M. L. Rahman, M. F. Ahmed, B. Biswas, and N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner, and Size-strain plot: Different precipitating agent approach, Journal of Alloys and Compounds 895 (2022) 162694. https://doi.org/10.1016/j.jallcom.2021.162694
  22. S. Ashok Kumar, S. S. R. Inbanathan, R. B. Vignesh, D. R. Rosaline, B. R. Kamalam, A. Uma, A. A. Ibrahim, S. Akbar, S. A. M. B. Dhas, and S. Baskoutas, Shock wave pulsed strategy on green synthesized nickel oxide nanoparticles: Structural, morphological, and electrochemical performance, Ceramics International, (2024), 51, 4509-4520. https://doi.org/10.1016/j.ceramint.2024.11.426
  23. C.O. Ehi-Eromosele, B.I. Ita, and E.E.J. Iweala, Low-temperature combustion synthesis of cobalt magnesium ferrite magnetic nanoparticles effects of fuel-to-oxidizer ratio and sintering temperature, J. Sol-Gel Sci. Technol, (2015), 76,298-308. https://doi.org/10.1007/s10971-015-3777-2
  24. B. Azhdar, Influence of fuel-to-oxidizer ratio, potential of hydrogen and annealing temperature on the structural and optical properties of nanocrystalline MgO powders synthesized by the hydrothermal method, J. Exp. Nanosci, (2023), 18, 2276278-2276299. https://doi.org/10.1080/17458080.2023.2276278
  25. Y. I. Meshcheryakov, A. K. Divakov, S. A. Atroshenko, N. S. Naumova, Effect of velocity nonuniformity on the dynamic recrystallization of metals in shock waves. Technical Physics Letters, (2010), 36(12), pp.1125-1128. https://doi.org/10.1134/S1063785010120187
  26. S. Atroshenko, Metals dynamic recrystallization up to nanocrystalline size induced shock loading. In AIP Conference Proceedings, 2016, June, (Vol. 1748, No. 1, p. 030005). AIP Publishing LLC. https://doi.org/10.1063/1.4954351
  27. M. Deepa, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Impact of shock waves on morphological, structural, optical and dielectric properties of l-alaninium maleate crystals. Journal of Materials Research, (2023), 38(18), pp.4303-4313. https://doi.org/10.1557/s43578-023-01143-1
  28. Deng, Ji-Hua, Jie Luo, Yue-Lei Mao, Shan Lai, Yun-Nan Gong, Di-Chang Zhong, and Tong-Bu Lu, π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks." Science advances, (2020), 6, no. 2, eaax9976. https://doi.org/10.1126/sciadv.aax9976
  29. A. V. Vologzhanina, Intermolecular interactions in functional crystalline materials: From data to knowledge. Crystals, (2019), 9 (9): 478. https://doi.org/10.3390/cryst9090478
  30. M. N. Siddique, T. Ali, A. Amed, and P. Tripathi, Enhanced electrical and thermal properties of pure and Ni substituted ZnO Nanoparticles, Nano-Struct. Nano-Object. (2018), vol. 16, pp. 156-166. https://doi.org/10.1016/j.nanoso.2018.06.001
  31. A. Ummadisingu, S. Meloni, A. Mattoni, W. Tress, M. Gratzel, Crystal‐size‐induced band gap tuning in perovskite films. Angewandte Chemie International Edition, (2021), 60(39), 21368-21376. https://doi.org/10.1002/anie.202106394
  32. S. Oviya, F. Irine Maria Bincy, Raju Suresh Kumar, P. Kannappan, Ikhyun Kim, S. A. Martin Britton Dhas, Reversible phase transition and tunable band gap in zinc telluride via acoustic shock. Dalton Trans, (2025) 54, pp.3188-3206. https://doi.org/10.1039/D4DT03393K
  33. M. Deepa, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Impact of shock waves on morphological, structural, optical and dielectric properties of l‑alaninium maleate crystals, Journal of Materials Research, 38, 4303-4313 (2023). https://doi.org/10.1557/s43578-023-01143-1
  34. R. A. Menezes, C. N. Bhuvaneshwari, H. Venkatachalam, K. S. Bhat, Focused review on applications of chalcone-based compounds in material science. Discover Applied Sciences, 7(8), p.814, (2025). https://doi.org/10.1007/s42452-025-07478-0
  35. P. Poornesh, S. Shettigar, G. Umesh, K. B. Manjunatha, K. P. Kamath, B. K. Sarojini, B. Narayana, Nonlinear optical studies on 1, 3-disubstituent chalcones doped polymer films. Optical materials, 31(6), pp.854-859, (2009). https://doi.org/10.1016/j.optmat.2008.09.007