Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025)

Enhancing Electrochemical Performance, Bandgap Tunability, andMorphology Transition of CdS via Acoustic Shock Wave Exposure

Submitted
July 31, 2025
Published
2025-09-04

Abstract

As global demand for efficient energy storage systems increases, supercapacitors emerged as a promising candidate due to their high-power density, long cycle life, and rapid charge-discharge capability. Cadmium sulfide (CdS) is an II-VI semiconductor, offers potential as an electrode material but is limited by conventional synthesis routes that fail to optimize its structural and electrochemical characteristics. This current study introduces a novel method of acoustic shock wave treatment to enhance the electrochemical performance of CdS. Using a semi-automatic Reddy tube CdS is subjected to 300 shock pulses with a Mach number of 1.5, a pressure of 0.59 MPa, and a temperature of 520K, resulting in a XRD peak shift without structural degradation, bandgap reduction from 2.37 to 2.25 eV, and a morphology change from rod- to cube-shaped structures (FE-SEM). BET analysis revealed that the surface area increased from 1.07 to 2.10 m²/g and an average pore diameter reduction from 19.70 to 9.50 nm. Electrochemical measurements showed increased specific capacitance for 300 shock pulses from 266 to 268 F g-1 at 5 mV s-1 and from 128 to 142 F g-1 at 100 mV s-1, along with increased capacitive contribution from 75% to 78% at 5 mV s-1 and from 93% to 94% at 100 mV s-1 and improved ion diffusion kinetics. After 300 shock pulses sample also exhibited a significant reduction in bulk resistance from 6.613 × 103 to 1.262 × 103 Ω, increased bulk conductivity from 1.51 × 10-4 to 7.92 × 10-4 W m-1 K-1, and enhanced bulk capacitance from 7.90 × 10-6 to 9.81 × 10-6 F. Additionally, cyclic stability improved, with capacitance retention rising from 63.3% to 71.4% after shock wave treatment. These results demonstrate the effectiveness of acoustic shock wave treatment in tailoring material properties for energy storage applications, offering a scalable strategy for the development of next-generation supercapacitor electrodes.

References

  1. Li J, Chen S, Zhu X, et al. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4. Adv. Sci, 2017; 4: 1-8. https://doi.org/10.1002/advs.201700345
  2. Liu Y, Wen S, Shi W Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors, Mater. Lett, 2018; 214: 194-197. https://doi.org/10.1016/j.matlet.2017.12.014
  3. Bhagwan J, Nagaraju G, Ramulu B, et al. Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors. Electrochim. Acta, 2019; 299: 509-517. https://doi.org/10.1016/j.electacta.2018.12.174
  4. Huang Y, Miao YE, Lu H, et al. Hierarchical ZnCo2O4@NiCo2O4 core-sheath nanowires: Bifunctionality towards high-performance supercapacitors and the oxygen-reduction reaction. Chem. - A Eur. J., 2015; 21: 10100-10108. https://doi.org/10.1002/chem.201500924
  5. Chang JK, Lin CT, Tsai WT. Manganese oxide/carbon composite electrodes for electrochemical capacitors. Electrochem. Commun., 2004; 6: 666-671. https://doi.org/10.1016/j.elecom.2004.04.020
  6. Toupin M, Belanger D, Hill IR, et al. Performance of experimental carbon blacks in aqueous supercapacitors. J. Power Sources, 2005; 140: 203-210. https://doi.org/10.1016/j.jpowsour.2004.08.014
  7. Naudin E, Ho HA, Branchaud S, et al. Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl) thiophene) in pure ionic liquids. J. Phys. Chem. B, 2002; 106: 10585-10593. https://doi.org/10.1021/jp020770s
  8. Prasad KR, Koga K, Miura N. Electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors. Chem. Mater., 2004; 16: 1845-1847. https://doi.org/10.1021/cm0497576
  9. Gao P, Liu J, Zhang T. Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. J. Hazard. Mater., 2012; 229: 209-216. https://doi.org/10.1016/j.jhazmat.2012.05.099
  10. Zhang K, Liu X, Sun Y. Synthesis and electrochemical properties of LiFePO4/C composite cathode material prepared by a new route using supercritical carbon dioxide as a solvent. J. Mater. Chem., 2011; 46: 6975-6980. https://doi.org/10.1039/c1jm10168d
  11. Moore VC, Strano MS, Haroz EH. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett., 2003; 3: 1379-1382. https://doi.org/10.1021/nl034524j
  12. Jie JS, Zhang WJ, Jiang Y. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett., 2006; 6: 1887-1892. https://doi.org/10.1021/nl060867g
  13. Li Q, Guo B, Yu J. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Am. Chem. Soc., 2011; 133: 10878-10884. https://doi.org/10.1021/ja2025454
  14. Pawar SA, Patil DS, Shin JC, et al. Enhanced battery-type supercapacitor performance based on composite structure of nickel cobaltite and cadmium sulfide. J. Electroanal. Chem., 2020; 873: 114370. https://doi.org/10.1016/j.jelechem.2020.114370
  15. Dong R, Ye Q, Kuang L, et al. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition metal ions. ACS Appl. Mater. Interfaces, 2013; 5: 9508-9516. https://doi.org/10.1021/am402257y
  16. Sivakumar A, Lidong D, Sahaya Jude D S, et al. Acoustic shock wave-induced short-range ordered graphitic domains in amorphous carbon nanoparticles and correlation between magnetic response and local atomic structures. Diamond Relat. Mater. 2024; 141: 110587-110609. https://doi.org/10.1016/j.diamond.2023.110587
  17. Sivakumar A, Lidong D, Sahaya Jude D S, et al. Acoustic shock wave-induced chemical reactions: A case study of NaCl single crystal. J. Mol. Struct. 2024; 1312: 138490-138498. https://doi.org/10.1016/j.molstruc.2024.138490
  18. Irine Maria Bincy F, Oviya S, Kumar RS, et al. Acoustic shock wave-induced reversible phase transition (rhombohedral to hexagonal) of bismuth telluride. J. Mater. Sci., 2024; 59: 7044-7059. https://doi.org/10.1007/s10853-024-09574-9
  19. Oviya S, Irine Maria Bincy F, Arumugam S, et al. Acoustic shock wave-induced phase transition in indium selenide: Tuning band gap energy for solar cell applications. CrystEngComm, 2024; 26: 2498-2510. https://doi.org/10.1039/D4CE00012A
  20. Sivakumar A, Sahaya Jude D S, Pazhanivel T, et al. Phase transformation of amorphous to crystalline of multiwall carbon nanotubes by shock waves. Cryst. Growth Des., 2021; 21: 1617-1624. https://doi.org/10.1021/acs.cgd.0c01464
  21. Sivakumar A, Dai L, Sahaya Jude D S, et al. Acoustic shock wave-induced solid-state fusion of nanoparticles: A case study of the conversion of one-dimensional rod shape into three-dimensional honeycomb nanostructures of CdO for high-performance energy storage materials. Inorg. Chem., 2024; 63: 576-592. https://doi.org/10.1021/acs.inorgchem.3c03461
  22. Irine Maria Bincy F, Oviya S, Kumar RS, et al. Acoustic shock wave treatment as a pathway to enhance the specific capacitance of selenium-based layered chalcogenides for supercapacitor applications. New J. Chem., 2025; 49: 8297-8315. https://doi.org/10.1039/D5NJ00461F
  23. Irine Maria Bincy F, Oviya S, Kannappan P, et al. Acoustic shock wave-driven dynamic recrystallization induced reversible rod-to-cube morphology transition in CdS: preserving structural integrity with optical modifications. Dalton Trans., 2025; 54: 10916-10935. https://doi.org/10.1039/D5DT00998G
  24. Gao Y, Kong D, Han J, et al. Cadmium sulfide in-situ derived heterostructure hybrids with tunable component ratio for highly sensitive and selective detection of ppb-level H₂S. J. Colloid Interface Sci., 2022; 627: 332-342. https://doi.org/10.1016/j.jcis.2022.07.052
  25. Anirudha G, Sanhita P, Satyabrata R. Structural phase transformation from wurtzite to zinc-blende in uncapped CdS nanoparticles. Solid State Commun., 2013; 154: 25-29. https://doi.org/10.1016/j.ssc.2012.10.038
  26. Sivakumar A, Dai L, Sahaya Jude D S, et al. Tuning of lower to higher crystalline nature of b-L-glutamic acid by shock waves. J. Mol. Struct., 2023; 1288: 135788. https://doi.org/10.1016/j.molstruc.2023.135788
  27. Ichiyanagi K, Nakamura KG. Structural dynamics of materials under shock compression investigated with synchrotron radiation. Metals, 2016; 6: 17. https://doi.org/10.3390/met6010017
  28. Nasiri-Tabrizi B. Thermal treatment effect on structural features of mechano-synthesized fluorapatite-titania nanocomposite: A comparative study. J. Adv. Ceram., 2014; 3: 31-42. https://doi.org/10.1007/s40145-014-0090-4
  29. Pal M, Mathews NR, Santiago P, et al. A facile one-pot synthesis of highly luminescent CdS nanoparticles using thioglycerol as capping agent. J. Nanopart. Res., 2012; 14: 916. https://doi.org/10.1007/s11051-012-0916-3
  30. Khatter J, Chauhan RP. Gamma-ray induced modifications on CdS nanorod mesh: Structural, optical, and electrical properties. Radiat. Phys. Chem., 2021; 182: 109353. https://doi.org/10.1016/j.radphyschem.2021.109353
  31. Kong X, Yu F, Zhang H, et al. Synthesis and study of morphology regulation, formation mechanism, and photocatalytic performance of CdS. Appl. Surf. Sci., 2022; 576: 151817. https://doi.org/10.1016/j.apsusc.2021.151817
  32. Kanemitsu Y, Ishida Y, Nakada I, Kuroda H. Anomalous surface transformations in crystalline silicon induced by subpicosecond laser pulses. Appl. Phys. Lett., 1986; 48: 209-211. https://doi.org/10.1063/1.96797
  33. Riaz M, Ali B, Mansoor Ali S, et al. Stress-induced transformation on the cubic perovskite RbTaO3 for high-temperature applications: a DFT approach. J. Comput. Electron., 2024; 23: 483-497. https://doi.org/10.1007/s10825-024-02166-5
  34. Sharma M, Murugavel S, Shukla DK, de Groot FMF. Reversal in lattice contraction of α-Fe2O3 nanoparticles. J. Phys. Chem. C, 2018; 122: 9292-9301. https://doi.org/10.1021/acs.jpcc.8b00550
  35. Liang YC, Lung TW. Growth of hydrothermally derived CdS-based nanostructures with various crystal features and photoactivated properties. Nanoscale Res., 2016; 11: 264. https://doi.org/10.1186/s11671-016-1490-x
  36. Meshcheryakov YI, Divakov AK, Atroshenko SA, Naumova NS. Effect of velocity nonuniformity on the dynamic recrystallization of metals in shock waves. Tech. Phys. Lett., 2010; 36: 1125-1128. https://doi.org/10.1134/S1063785010120187
  37. Sivakumar A, Dai L, Jude Dhas SS, et al. Experimental evidence of acoustic shock wave-induced dynamic recrystallization: A case study on ammonium sulfate. Cryst. Growth Des., 2024; 24: 491-498. https://doi.org/10.1021/acs.cgd.3c01180
  38. Shi J, Jiang B, Liu Z, et al. Effects of specific surface area of electrode and different electrolyte on capacitance properties in nanoporous-structure CrN thin film electrode for supercapacitor. Ceram. Int., 2021; 47: 18540-18549. https://doi.org/10.1016/j.ceramint.2021.03.177
  39. Ahmad G, Javed Y, Jamil Y, et al. Efficient label-free detection of chloramphenicol by iron-doped cadmium sulfide nanomaterials. J. Mater. Sci.: Mater. Electron., 2022; 33: 12295-12309. https://doi.org/10.1007/s10854-022-08188-8
  40. Zhang S, Huang W, Fu X, et al. Ultra-low content of Pt modified CdS nanorods: Preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system. J. Hazard. Mater., 2018; 360: 182-192. https://doi.org/10.1016/j.jhazmat.2018.07.108
  41. Nisha V, Paravannoor A, Panoth D, et al. CdS nanosheets as electrode materials for all pseudocapacitive asymmetric supercapacitors. Bull. Mater. Sci., 2021; 44: 101. https://doi.org/10.1007/s12034-021-02392-8
  42. Brijesh K, Nagaraja HS. Lower band gap Sb/ZnWO4/r-GO nanocomposite-based supercapacitor electrodes. J. Electron. Mater., 2019; 48: 4188-4195. https://doi.org/10.1007/s11664-019-07185-8
  43. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci., 2014; 7: 1597-1614. https://doi.org/10.1039/c3ee44164d
  44. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014; 80: 1210-1211. https://doi.org/10.1126/science.1249625
  45. Muhammad A, Riaz J, Yang YH, et al. Synthesis of high-performance CdS/MnO composite electrode to achieve high energy and power densities for asymmetrical supercapacitors. Mater. Des., 2025; 251: 113704-113715. https://doi.org/10.1016/j.matdes.2025.113704
  46. Yan J, Fan Z, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO₂ composites as supercapacitor electrodes. Carbon, 2010; 48: 487-493. https://doi.org/10.1016/j.carbon.2009.09.066
  47. ul Haq Ali Shah A, Ullah S, Bilal S, et al. Reduced graphene oxide/poly(pyrrole-co-thiophene) hybrid composite materials: Synthesis, characterization, and supercapacitive properties. Polymers, 2020; 12: 1110-1131. https://doi.org/10.3390/polym12051110
  48. Deepannita C, Maruthamuthu S, Tholkappiyan R, et al. Zinc positioning’s impact on electrochemical stability of γ Al2O3 for supercapacitor efficiency. Ionics, 2024; 30: 7365-7380. https://doi.org/10.1007/s11581-024-05802-z
  49. Tholkappiyan R, Raji RK, Palanisamy S, et al. The role of in situ and operando techniques in unraveling local electrochemical supercapacitor phenomena. Ind. Eng. Chem. Res., 2025; 145: 144-168. https://doi.org/10.1016/j.jiec.2024.10.077
  50. Mahendiran R, Iyandurai N, Muniyappan M. Synthesis and characterization of strontium titanate (SrTiO3) nanoparticles doped with Azadirachta indica leaf extract and coconut water by sol-gel method. Eur. Chem. Bull., 2023; 12: 184-198.
  51. Allison A, Andreas HA. Minimizing the Nyquist-plot semi-circle of pseudocapacitive manganese oxides through modification of the oxide-substrate interface resistance. J. Power Sources, 2019; 426: 93-96. https://doi.org/10.1016/j.jpowsour.2019.04.029